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Two-point resistance of a resistor network embedded on a globe
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We consider the problem of two-point resistance in an (m − 1) × n resistor network embedded on a globe,
a geometry topologically equivalent to an m × n cobweb with its boundary collapsed into one single point.
We deduce a concise formula for the resistance between any two nodes on the globe using a method of direct
summation pioneered by one of us [Z.-Z. Tan, L. Zhou, and J. H. Yang, J. Phys. A: Math. Theor. 46, 195202
(2013)]. This method is contrasted with the Laplacian matrix approach formulated also by one of us [F. Y. Wu, J.
Phys. A: Math. Gen. 37, 6653 (2004)], which is difficult to apply to the geometry of a globe. Our analysis gives
the result in the form of a single summation.
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I. INTRODUCTION

A classic problem in electric circuit theory first studied by
Kirchhoff [1] more than 160 years ago is the computation
of resistances in resistor networks. Kirchhoff formulated the
problem in terms of the Laplacian matrix of the network and
also noted that the Laplacian also generates spanning trees. For
the explicit computation of two-point resistances, Venezian [2]
considered the resistance between two arbitrary nodes using
the method of superposition. Cserti [3] evaluated the two-point
resistance using the lattice Green’s function. Their studies are
confined to regular lattices of infinite size.

One of the present authors [4] formulated a different ap-
proach and derived an expression for the two-point resistance
in arbitrary finite and infinite lattices in terms of the eigenvalues
and eigenvectors of the Laplacian matrix. The Laplacian
analysis has also been extended to impedance networks after a
slight modification of the formulation of [5]. We refer to these
methods as the Laplacian approach.

Applications of the Laplacian approach require a complete
knowledge of the eigenvalues and eigenvectors of the Lapla-
cian straightforward to obtain for regular lattices. However,
the actual computation depends crucially on the geometry of
the network and, for nonregular lattices such as a cobweb or
a globe, it can be difficult to solve the eigenvalue problem.
Alternate methods of evaluation are needed.

The cobweb is a two-dimensional rectangular network with
a periodic boundary condition imposed in one spatial direction,
together with the insertion of an additional node connected to
every node on one of the two boundaries. An example of the
cobweb is shown in the left panel of Fig. 1. Tan, Zhou, and Yang
[6] proposed a conjecture on the resistance between two nodes
on the cobweb. It is difficult to adopt the Laplacian approach
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directly to the problem due to the special geometry of the
cobweb. By modifying the method slightly to take care of the
cobweb geometry, Izmailian, Kennna, and Wu succeeded in
establishing the Tan-Zhou-Yang conjecture using a modified
Laplacian approach [7].

In this paper we consider another special geometry of a
network, a globe, or a cobweb with its boundary collapsed into
one node resulting in a network in the shape of a globe shown
in the right panel of Fig. 1. Thus, an m × n cobweb network of
m rows and n columns becomes a globe with m − 1 latitudes
and n longitudes. The example of m = 6,n = 12 is shown in
Fig. 1; however, due to its special geometry, both the Laplacian
and the Izmailian-Kenna-Wu modified Laplacian approaches
are difficult to apply and an alternative consideration is needed.

Studies of the resistance problem have also been carried
out independently by Tan et al. along a route that we shall
refer to as the method of direct evaluation [6,8–10]. The direct
method is useful in cases when there exists a special node
such as a pole of the globe or the center of the cobweb, with
all other nodes connected to it equally along longitudes of a
globe or the radii of a cobweb. This unique connectivity makes
it possible to compute the potential between two nodes by
computing separately their relative potentials with respect to
the special node and take the difference. One thus circumvents
the need of diagonalizing a nonregular Laplacian matrix. The
direct method of computing resistances had been applied
successively to the cobweb network for fixed values of m

up to m = 4 [6,8,9]. It has also been used recently to compute
the resistances in a fan network [11]. In this paper we apply
the direct method to solve the globe problem.

II. EQUIVALENT RESISTANCE: THE MAIN RESULT

We consider a globe with n longitudes and m − 1 latitudes
shown in Fig. 1. Bonds in the longitude and latitude directions
have respective resistances r0 and r and we let the south pole
O be the origin of coordinates. We define a variable Li and
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FIG. 1. A 6 × 12 cobweb network with its boundary collapsed
into a single node O, resulting in a globe with 5 latitudes and
12 longitudes. Bonds in longitude and latitude directions represent
resistors r0 and r , respectively. The cobweb center O ′ is the north
pole and the cobweb boundary collapses into the south pole O.

for later use λi and λ̄i by

λi ≡ e2Li = 1 + h − h cos θi +
√

(1 + h − h cos θi)2 − 1,

λ̄i ≡ e−2Li = 1 + h − h cos θi −
√

(1 + h − h cos θi)2 − 1,

cosh 2Li = 1 + h − h cos θi, (1)

where

h = r/r0, θi = (i − 1)π/m, i = 1,2, . . . ,m.

We denote nodes of the network by the coordinate {x,y},
where x = 1,2, . . . ,n and y = 0,1,2, . . . ,m, with y = 1 de-
noting the latitude just above the pole O and x = 1 any
longitudinal under the cyclic boundary condition. We find
the resistance between two nodes d1 = {1,y1} and d2 = {x +
1,y2} to be given by the expression

R
globe
m×n ({1,y1},{x + 1,y2}) = (y1 − y2)2

mn
r0 + r

m

m∑
i=2

cosh(nLi)(sin2 y1θi + sin2 y2θi) − 2 cosh[(n − 2x)Li] sin(y1θi) sin(y2θi)

sinh(2Li) sinh(nLi)
.

(2)

In particular, we have the following special cases.
Case 1. When d1 and d2 are on the same longitude at {1,y1}

and {1,y2}, we have

R
long
m×n(d1,d2) = (y1 − y2)2

mn
r0

+ r

m

m∑
i=2

(sin y1θi − sin y2θi)
2

(
coth(nLi)

sinh(2Li)

)
.

(3)

Case 2. When d1 and d2 are on the same latitude at {1,y}
and {x + 1,y}, we have

Rlatt
m×n(d1,d2) = 4r

m

m∑
i=2

sinh(xLi) sinh[(n − x)Li]

sinh(2Li) sinh(nLi)
[sin2(yθi)],

(4)

The expression (4) is invariant under x ↔ (n − x) as expected.
Case 3. The resistance between a node at {x,y} and the

north pole O ′ is

Rm×n({x,y},O ′)

= (m − y)2

mn
r0 + r

m

m∑
i=2

sin2(yθi)

(
coth(nLi)

sinh(2Li)

)
. (5)

Case 4. The resistance between the two poles O and O ′ is

Rm×n(O,O ′) = mr0/n. (6)

III. DERIVATION OF THE MAIN RESULT (2)

A. Expressing the resistance in terms of longitudinal currents

To compute the resistance between two nodes d1 = {1,y1}
and d2 = {x + 1,y2} we inject a current J into the network
at d1 and exit the current at d2. We denote the currents in all
segments of the network as shown in Fig. 2. Then by Ohm’s
law the potential differences between d1, d2, and the north pole
O ′ are, respectively,

U
globe
m×n (d1,O

′) = r0

m∑
i=y1+1

I
(i)
1 ,

U
globe
m×n (O ′,d2) = −r0

m∑
i=y2+1

I
(i)
x+1,

FIG. 2. Segment of the globe with current directions.
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where I
(i)
1 denotes currents along the longitude 1 and I

(i)
x+1

denotes currents along the longitudinal x + 1. It then follows
from Ohm’s law that the resistance between d1 and d2 is

R
globe
m×n ({1,y1},{x + 1,y2}) = r0

J

⎛
⎝ m∑

i=y1+1

I
(i)
1 −

m∑
i=y2+1

I
(i)
x+1

⎞
⎠ .

(7)

Therefore, we need to find the longitudinal currents I
(i)
1 and

I
(i)
x+1. This is the main objective of this paper.

B. Matrix equation for longitudinal currents

Analysis of the longitudinal currents is best carried out in
terms of a matrix equation. Early discussions along this line
are due to Tan et al. [6,8–10]. A similar analysis for a fan
network has been given recently in [11].

A segment of the globe network is shown in Fig. 2 with
current labeling and we focus on the two upper rectangular
meshes. Around the two meshes there are five longitudinal cur-
rents I

(i)
k−1,I

(i)
k ,I

(i)
k+1,I

(i−1)
k ,I

(i+1)
k and four horizontal currents

IAi,k . The potential across each current segment is either I
(i)
k r0

or IAi,kr . The Kirchhoff law says that the sum of the potentials
around any closed loop is equal to zero. Applying this to the
outer perimeter of the two meshes gives an equation relating
the four horizontal currents. Furthermore, the sum of all
currents at a node must be zero. Applying this Kirchhoff rule to
the two upper consecutive nodes on the longitude k, one obtains
two more equations relating the four horizontal currents.
However, it can be seen from Fig. 2 that the four horizontal
currents enter all three equations only in the combination of
�1 = IAi+1,k−1 − IAi+1,k and �2 = IAi,k−1 − IAi,k . Thus one
can eliminate �1 and �2 from the three equations. This gives
the relation

I
(i)
k+1 = −I

(i)
k−1 + 2(1 + h)I (i)

k − hI
(i+1)
k − hI

(i−1)
k (8)

connecting the five longitudinal currents. After taking into
account modifications at i = 1,m [11], (8) can be written in a
matrix form

Ik+1 = AmIk − Ik−1, (9)

where Am and Ik are

Am =

⎛
⎜⎜⎜⎜⎝

2 + h −h 0 0 · · · 0
−h 2(1 + h) −h 0 · · · · · ·

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −h 2(1 + h) −h

0 · · · 0 0 −h 2 + h

⎞
⎟⎟⎟⎟⎠ , Ik =

⎛
⎜⎜⎜⎜⎜⎝

I
(1)
k

I
(2)
k
...

I
(m−1)
k

I
(m)
k

⎞
⎟⎟⎟⎟⎟⎠ . (10)

It is understood that we have the cyclic condition

I0 = In, In+1 = I1. (11)

We consider the solution of (9) in the next section.

C. General solution of the matrix equation

In this section we consider the solution of (9) in the absence of an injected current, namely, J = 0. The eigenvalues
ti , i = 1,2, . . . ,m, of Am are the m solutions of the equation

det|Am − t Īm| = 0, (12)

where Īm is the m × m identity matrix. Since Am is Hermitian it can be diagonalized by a similarity transformation to yield

PmAm(Pm)−1 = �m, (13)

where �m is a diagonal matrix with eigenvalues ti of Am in the diagonal and column vectors of (Pm)−1 are eigenvectors of Am.
It can be verified that we have

Pm =

⎛
⎜⎜⎜⎜⎜⎝

1/
√

2 1/
√

2 · · · 1/
√

2

cos
(
1 − 1

2

)
θ2 cos

(
2 − 1

2

)
θ2 · · · cos

(
m − 1

2

)
θ2

...
...

. . .
...

cos
(
1 − 1

2

)
θm cos

(
2 − 1

2

)
θm · · · cos

(
m − 1

2

)
θm

⎞
⎟⎟⎟⎟⎟⎠ , (14)

(Pm)−1 = 2

m

⎛
⎜⎜⎜⎜⎜⎝

1/
√

2 cos
(
1 − 1

2

)
θ2 · · · cos

(
1 − 1

2

)
θm

1/
√

2 cos
(
2 − 1

2

)
θ2 · · · cos

(
2 − 1

2

)
θm

...
...

. . .
...

1/
√

2 cos
(
m − 1

2

)
θ2 · · · cos

(
m − 1

2

)
θm

⎞
⎟⎟⎟⎟⎟⎠ , (15)
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where θi = (i − 1)π/m, and

ti = 2(1 + h) − 2h cos θi = λi + λ̄i

= 2 cosh(2Li), i = 1,2,3, . . . ,m, (16)

where we have made use of (1). We apply Pm on the left-hand
side of (9) and write

Xk ≡ PmIk or Ik = (Pm)−1Xk. (17)

After making use of (13), we obtain the equation

Xk+1 = �mXk − Xk−1. (18)

We let the ith element of the column vector Xk be X
(i)
k . Then

(18) gives

X
(i)
k+1 = tiX

(i)
k − X

(i)
k−1, i = 1,2, . . . ,m, (19)

which is a set of recurrence relations for X
(i)
k .

For i = 1, the solution of (19), which we will make use of
later, is particularly simple. Since θ1 = 0 and L1 = 0, we have
t1 = 2. Then (19) becomes

X
(1)
k+1 = 2X

(1)
k − X

(1)
k−1, k = 1,2, . . . ,n − 1, (20)

which together with the cyclic condition X
(1)
0 = X(1)

n is a set
of n − 1 linear relations for n unknowns X

(1)
k ,k = 1,2, . . . ,n,

which is insufficient. However, other than the trivial solution
X

(1)
k = 0, which is useless, we have also the obvious solution

that all X
(1)
k are equal, namely,

X
(1)
1 = X

(1)
2 = · · · = X(1)

n . (21)

For i > 1, the recurrence relation (19) can be solved by the
method of generating function. We define generating function

G(s) =
∞∑

k=1

X
(i)
k sk. (22)

Multiplying (19) by sk and summing both sides of the equation
from k = 1 to k = ∞ yields

1

s

[
G(s) − X

(i)
1 s − X

(i)
2 s2

] = ti
[
G(s) − X

(i)
1 s

] − sG(s),

from which we solve for G(s), obtaining

G(s) = X
(i)
1 s + (

X
(i)
2 − tiX

(i)
1

)
s2

1 − tis + s2
. (23)

The partial fraction expansion of (23) by using 1 − tis + s2 =
(1 − λis)(1 − λ̄is), where λi and λ̄i are defined in (1), gives

1

1 − tis + s2
= 1

λi − λ̄i

(
λi

1 − λis
− λ̄i

1 − λ̄is

)
,

which we substitute into (23). By expanding the right-hand side
of (23) into a series in s by making use of (1 − z)−1 = 1 + z +
z2 + · · · and comparing both sides term by term, we obtain,
after making use of the identity F

(i)
k − tiF

(i)
k−1 = −F

(i)
k−2, the

solution of X
(i)
k in terms of a given initial condition of X

(i)
1 and

X
(i)
2 ,

X
(i)
k = X

(i)
2 F

(i)
k−1 − X

(i)
1 F

(i)
k−2, i > 1, k � 1, (24)

where

F
(i)
k = λk

i − λ̄k
i

λi − λ̄i

= sinh(2kLi)

sinh(2Li)
. (25)

In a similar fashion, by considering the generating function
(22) with a summation over k from k = u + 1 to ∞ with
a given initial condition of X

(i)
u+2 and X

(i)
u+1, where u � 0 is

arbitrary, we obtain the solution

X
(i)
k = X

(i)
u+2F

(i)
k−u−1 − X

(i)
u+1F

(i)
k−u−2,

i > 1, u � 0, k � u + 1. (26)

Note that (26) reduces to (24) when u = 0.

D. Boundary conditions with input and output currents

While either (24) or (26) serves to determine Ik when there
is no external current injected to the network, to compute
the resistance between nodes d1 = d1(1,y1) and d2 = d2(x +
1,y2) we need to inject current J at d1 and exit the current
at d2. Then (24) holds only for 1 � k � x + 1. For k in the
range of x + 1 � k � n + 1, however, we need to use (26)
with u = x. Thus the injection of J at d1(1,y1) and the exit of
J at d2 = d2(x + 1,y2) specialize (9) for k = 1 and k = x + 1
to

I2 = AmI1 − In − JH1, (27)

Ix+2 = AmIx+1 − Ix − JH2, (28)

where we have made use of the cyclic condition I0 = In and
H1 and H2 are column matrices with elements

(H1)i = h
(−δi,y1 + δi,y1+1

)
,

(H2)i = h
(
δi,y2 − δi,y2+1

)
or, equivalently,

H1 = [

from 0th to (y1+1)th︷ ︸︸ ︷
0, . . . ,0,−h,h ,0, . . . ,0 ]T ,

H2 = [

from 0th to (y2+1)th︷ ︸︸ ︷
0, . . . ,0,h,−h ,0, . . . ,0]T ,

where [ ]T denote matrix transposes. Applying Pm to (27) and
(28) on the left-hand sides, we are led to

X2 = �mX1 − Xn − hJD1, (29)

Xx+2 = �mXx+1 − Xx − hJD2, (30)

where hD1 = PmH1 and hD2 = PmH2 or, equivalently,

D1 = [ζ1,1,ζ1,2, . . . ,ζ1,i , . . . ,ζ1,m−1,ζ1,m]T ,

ζ1,i = Py1,i − Py1+1,i = − cos
(
y1 − 1

2

)
θi + cos

(
y1 + 1

2

)
θi

= −2 sin(y1θi) sin(θi/2), (31)

D2 = [ζ2,1,ζ2,2, . . . ,ζ2,i , . . . ,ζ2,m−1,ζ2,m]T ,

ζ2,i = Py2,i − Py2+1,i = cos
(
y2 − 1

2

)
θi − cos

(
y2 + 1

2

)
θi

= 2 sin(y2θi) sin(θi/2). (32)
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Explicitly, (29) and (30) read

X
(i)
2 = tiX

(i)
1 − X(i)

n − hJζ1,i , (33)

X
(i)
x+2 = tiX

(i)
x+1 − X(i)

x − hJζ2,i , (34)

where ti = 2 cosh 2Li .
To determine X

(i)
1 ,X

(i)
x+1 needed in our resistance calculation (7), we set k = x,x + 1 in (24), u = x and k = n,n + 1 in (26),

and make use of the cyclic condition (11) X
(i)
n+1 = X

(i)
1 . Together with (33) and (34) this gives six equations relating the six

unknowns X
(i)
1 ,X

(i)
2 ,X(i)

n ,X(i)
x ,X

(i)
x+1,X

(i)
x+2,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
(i)
x−2 −F

(i)
x−1 0 1 0 0

F
(i)
x−1 −F (i)

x 0 0 1 0

ti −1 −1 0 0 0

0 0 1 0 F
(i)
n−x−2 −F

(i)
n−x−1

1 0 0 0 F
(i)
n−x−1 −F

(i)
n−x

0 0 0 −1 ti −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
(i)
1

X
(i)
2

X(i)
n

X(i)
x

X
(i)
x+1

X
(i)
x+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

hJζ1,i

0

0

hJζ2,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i > 1, (35)

where ti = 2 cosh(2Li) and F
(i)
k = sinh(2kLi)/ sinh(2Li). Solving (35), we obtain after some algebra and reduction the two

solutions needed in our resistance calculation (7),

X
(i)
1 =

(
F

(i)
n−x + F (i)

x

)
ζ2,i + F (i)

n ζ1,i

4 sinh2 nLi

hJ

= hJ

((
F

(i)
n−x + F (i)

x

)
sin(y2θi) − F (i)

n sin(y1θi)

2 sinh2 nLi

)
sin(θi/2), i > 1, (36)

X
(i)
x+1 =

(
F

(i)
n−x + F (i)

x

)
ζ1,i + F (i)

n ζ2,i

4 sinh2 nLi

hJ

= hJ

(−(
F

(i)
n−x + F (i)

x

)
sin(y1θi) + F (i)

n sin(y2θi)

2 sinh2 nLi

)
sin(θi/2), i > 1. (37)

Solutions (36) and (37) are useful for i > 1. For i = 1 (36) and (37) give the trivial solutions X
(1)
1 = X

(1)
x+1 = 0; however, when

i = 1 we have ζ1,i = ζ2,i = 0 so (33) and (34) reduce to (20). Then using the same argument leading to (21), we again obtain
X

(1)
1 = X

(1)
2 = · · · = X(1)

n . This permits us to write

X
(1)
1 = 1

n

n∑
k=1

X
(1)
k = 1

n

n∑
k=1

m∑
j=1

[
(Pm)1j I

(j )
k

] = 1√
2 n

m∑
i=1

n∑
k=1

I
(i)
k , (38)

where we have made use of (Pm)1j = 1/
√

2.
The summations in (38) are taken over all longitudinal

current segments on the globe. Since the current J flows from
a node at latitude y1 to a node at latitude y2, by conservation
of current the summation over segments at a given latitude i

must yield J for y1 < i � y2 and zero otherwise, namely,

n∑
k=1

I
(i)
k = J for y1 < i < y2 + 1

= 0 otherwise, (39)

so (38) gives the simple result

X
(1)
1 = J√

2 n
(y2 − y1). (40)

E. Equivalent resistance

We are now in a position to evaluate the resistance (7). From
(17) we have

I
(i)
1 =

m∑
j=1

[(Pm)−1]ijX
(j )
1 .

Using (Pm)−1 given by (15) with [(Pm)−1]i1 = √
2/m for all

i, it is clear that the j = 1 term in the summation needs to be
singled out. This gives

I
(i)
1 =

√
2

m
X

(1)
1 + 2

m

m∑
j=2

X
(j )
1 cos

(
i − 1

2

)
θj (41)

and thus
m∑

i=y1+1

I
(i)
1 =

√
2

m
(m − y1)X(1)

1 − 1

m

m∑
j=2

X
(j )
1

(
sin(y1θj )

sin
(

1
2θj

)), (42)
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where we have used the formula
m∑

i=y+1

cos

(
i − 1

2

)
θj = −

(
sin(yθj )

2 sin
(

1
2θj

))
, (43)

which can be established by using the identity
∑n

k=1 cos(k −
1
2 )x = sin(nx)/2 sin(x/2) [12].

Substituting (40) into (42), we obtain

m∑
i=y1+1

I
(i)
1 = J

mn
(m − y1)(y2 − y1)

− 1

m

m∑
j=2

X
(j )
1

(
sin(y1θj )

sin
(

1
2θj

))
. (44)

Similarly, we also obtain

m∑
i=y2+1

I
(i)
x+1 = J

mn
(m − y2)(y2 − y1)

− 1

m

m∑
j=2

X
(j )
x+1

(
sin(y2θj )

sin
(

1
2θj

))
. (45)

Substituting (44) and (45) into (7), we obtain

R
globe
m×n (d1,d2)

= r0

m

(
(y2 − y1)2

n
+ 1

J

m∑
i=2

X
(i)
x+1 sin(y2θi) − X

(i)
1 sin(y1θi)

sin
(

1
2θi

)
)

.

(46)

Finally, we obtain our main result (2) by further substituting
X

(i)
1 and X

(i)
x+1 from (36) and (37) into (46).

F. Special cases

The special cases can be summarized as follows.
Case 1. When d1 = {1,y1} and d2 = {1,y2} are on the same

longitude, we take x = 0 and (2) reduces immediately to (3).
Case 2. When d1 = {1,y} and d2 = {x + 1,y} are on the

same latitude y, (2) immediately reduces to (4).
Case 3. The resistance between a node at {x,y} and the

north pole O ′ is obtained by setting y1 = y and y2 = m in (3).
This gives (5).

Case 4. The resistance between the two poles is obtained by
setting y1 = 0 and y2 = m in (3). This gives Rm×n(O,O ′) =
mr0/n. This result can also be deduced by considering
Rm×n(O,O ′) as connecting n linear chains of resistance mr0

each in parallel, since by symmetry there are no currents in the
horizontal direction.

IV. SUMMARY AND DISCUSSION

Wu [4] established a theorem that computes the equivalent
resistance between two nodes in a resistor network using the
Laplacian approach. For the m × n network the results are in
the form of a double summation. Additional work is required
to reduce this to a single summation.

An alternative direct approach of computing resistances had
been developed by Tan et al. [6,8–10] that, when applied to
the cobweb and globe networks, gives the result in terms of a
single summation. This offers a direct and somewhat simpler
approach. The direct method has been used by the present
authors [11] to obtain the two-point resistance in a fan network.
Here we have used the direct method to compute resistances
in a globe network equivalent to a cobweb with the boundary
collapsed into one point. Our main result is (2), which gives
the resistance between any two nodes of the globe. Various
special cases of the main result were presented.

It is useful to summarize the main idea of the direct
approach, which is a simple application of Ohm’s law. To
compute the resistance R12 between two nodes 1 and 2, one
injects a current I into the network at 1 with the current
exiting at 2 and computes the potential differences U1 = U1O ′

and U2 = U2O ′ between 1 and 2 and the pole O ′. Then the
resistance is R12 = |U1 − U2|/I .

It is also instructive to comment on why the Laplacian
method cannot be used. While it is tempting to apply the
Laplacian method by considering the globe as a cobweb
with zero resistances along its boundary, since elements of
the Laplacian are conductances that are infinite for zero
resistances, the application is not easily done. It is simpler
and far easier to use the direct approach.

The direct method can be extended to impedance networks
since Ohm’s law based on which the method is formulated is
applicable to impedances. This is more advantageous than
the Laplacian method, which needs to be modified when
dealing with impedance networks as the Laplacian matrix is
generally complex and non-Hermitian, which require special
considerations [5].

Finally, we remark that at large distances the two-point
resistance is expected to diverge logarithmically. This is what
had been found in regular lattices [13,14] and in the cobweb
[15]. The modification of the network by one or two special
nodes should not alter its macroscopic behavior.
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